Title: "Mastering Information Retrieval: The LLM Augmentation Journey"

SLIDE1
SLIDE1
        
SLIDE2
SLIDE2
        
SLIDE3
SLIDE3
        
SLIDE4
SLIDE4
        
SLIDE5
SLIDE5
        
SLIDE6
SLIDE6
        
SLIDE7
SLIDE7
        
SLIDE8
SLIDE8
        
SLIDE9
SLIDE9
        
SLIDE10
SLIDE10
        
SLIDE11
SLIDE11
        
SLIDE12
SLIDE12
        
SLIDE13
SLIDE13
        
SLIDE14
SLIDE14
        
SLIDE15
SLIDE15
        
SLIDE16
SLIDE16
        
SLIDE17
SLIDE17
        
SLIDE18
SLIDE18
        
SLIDE19
SLIDE19
        
SLIDE20
SLIDE20
        
SLIDE21
SLIDE21
        
SLIDE22
SLIDE22
        
SLIDE23
SLIDE23
        


RAG (Retrieval Augmentation Generation)

RAG, short for Retrieval Augmentation Generation, is a powerful model that combines the capabilities of retrieval, augmentation, and generation in natural language processing tasks. It is designed to enhance the performance of question-answering systems and text generation models by integrating these three key components.

How RAG Works:

RAG operates in three main stages:

Stage Description
1. Retrieval RAG first retrieves relevant information from a large knowledge source, such as a text corpus or a database, based on the input query or context. This retrieval step helps in narrowing down the search space and focusing on the most relevant data.
2. Augmentation After retrieving the initial information, RAG augments this data by adding more context or details to improve the understanding of the content. This augmentation step enriches the retrieved information and provides a more comprehensive view of the topic.
3. Generation Finally, RAG generates a coherent and informative response or output based on the retrieved and augmented data. This generation step ensures that the model produces accurate and contextually relevant answers to queries or prompts.

Role of Vector DB:

Vector DB plays a crucial role in the functioning of RAG by providing a structured and efficient way to store and retrieve vector representations of text data. These vector embeddings capture the semantic meaning and relationships between words, sentences, or documents, enabling RAG to perform similarity-based searches and context-aware retrievals.

By leveraging Vector DB, RAG can quickly access and manipulate vectorized representations of textual information, facilitating the retrieval and augmentation processes. This integration enhances the model's ability to understand and generate natural language responses with improved accuracy and relevance.


LLM Retrieval Augment Generation

LLM Retrieval Augment Generation is a multi-stage process that involves various sub-stages to enhance the retrieval and generation of information. Below are the four main stages along with their sub-stages:

Stage Sub-Stages
Pre-Retrieval Indexing, Query Manipulation, Data Modification
Retrieval Search, Ranking
Post-Retrieval Re-Ranking, Filtering
Generation Enhancing, Customization, Content Synthesis

Pre-Retrieval

In the Pre-Retrieval stage, the focus is on preparing the data for efficient retrieval. This involves indexing the data, manipulating queries to improve search results, and modifying the data structure for better organization.

Retrieval

The Retrieval stage involves the actual search process and ranking of results based on relevance. Search algorithms are applied to retrieve information, and ranking algorithms determine the order in which results are presented to the user.

Post-Retrieval

After retrieving the initial results, the Post-Retrieval stage focuses on refining the results further. This may involve re-ranking the results based on additional criteria and applying filters to narrow down the information to the most relevant.

Generation

In the Generation stage, the emphasis is on enhancing the retrieved information, customizing it to fit specific user needs, and synthesizing content to provide a more comprehensive output. This stage aims to generate augmented content that adds value to the retrieved information.




Rag-for-structured-and-unstru    Rag-for-strucutred-data    Sql-stats-genai-rag-methods-f   

From the blog

Build Dataproducts

How Dataknobs help in building data products

Enterprises are most successful when they treat data like a product. It enable to use data in multiple use cases. However data product should be designed differently compared to software product.

Be Data Centric and well governed

Generative AI is one of approach to build data product

Generative AI has enabled many transformative scenarios. We combine generative AI, AI, automation, web scraping, ingesting dataset to build new data products. We have expertise in generative AI, but for business benefit we define our goal to build data product in data centric manner. Our Product KREATE enable creation of data, user interface, AI assistant. Click to see it in action.

Well Governed data

Data Lineage and Extensibility

To build a commercial data product, create a base data product. Then add extension to these data product by adding various types of transformation. However it lead to complexity as you have to manage Data Lineage. Use knobs for lineage and extensibility

Build Budget Plan for GenAI

CIO Guide to create GenAI Budget for 2025

CIOs and CTOs can apply GenAI in IT Systems. The guide here describe scenarios and solutions for IT system, tech stack, GenAI cost and how to allocate budget. Once CIO and CTO can apply this to IT system, it can be extended for business use cases across company.

What is KREATE and KreatePro

Kreate - Bring your Ideas to Life

KREATE empowers you to create things - Dataset, Articles, Presentations, Proposals, Web design, Websites and AI Assistants Kreate is a platform inclide set of tools that ignite your creatviity and revolutionize the way you work. KReatePro is enterprise version.

What is KONTROLS

KONTROLS - apply creatvity with responsbility

KONTROLS enable adding guardrails, lineage, audit trails and governance. KOntrols recogizes that different use cases for Gen AI and AI have varying levels of control requirements. Kontrols provide structure to select right controls.

What is KNOBS

KNOBS - Experimentation and Diagnostics

Well defined tunable paramters for LLM API, LLM fine tuning , Vector DB. These parameters enable faster experimentation and diagosis for every state of GenAI development - chunking, embedding, upsert into vector DB, retrievel, generation and creating responses for AI Asistant.

Kreate Articles

Create Articles and Blogs

Create articles for Blogs, Websites, Social Media posts. Write set of articles together such as chapters of book, or complete book by giving list of topics and Kreate will generate all articles.

Kreate Slides

Create Presentations, Proposals and Pages

Design impactful presentation by giving prmpt. Convert your text and image content into presentations to win customers. Search in your knowledbe base of presentations and create presentations or different industry. Publish these presentation with one click. Generate SEO for public presentations to index and get traffic.

Kreate Websites

Agent to publish your website daily

AI powered website generation engine. It empower user to refresh website daily. Kreate Website AI agent does work of reading conent, website builder, SEO, create light weight images, create meta data, publish website, submit to search engine, generate sitemap and test websites.

Kreate AI Assistants

Build AI Assistant in low code/no code

Set up AI Assistant that give personized responss to your customers in minutes. Add RAG to AI assistant with minimal code- implement vector DB, create chunks to get contextual answer from your knowlebase. Build quality dataset with us for fine tuning and training a cusom LLM.

Create AI Agent

Build AI Agents - 5 types

AI agent independently chooses the best actions it needs to perform to achieve their goals. AI agents make rational decisions based on their perceptions and data to produce optimal performance and results. Here are features of AI Agent, Types and Design patterns

Develop data products with KREATE and AB Experiment

Develop data products and check user response thru experiment

As per HBR Data product require validation of both 1. whether algorithm work 2. whether user like it. Builders of data product need to balance between investing in data-building and experimenting. Our product KREATE focus on building dataset and apps , ABExperiment focus on ab testing. Both are designed to meet data product development lifecycle

Innovate with experiments

Experiment faster and cheaper with knobs

In complex problems you have to run hundreds of experiments. Plurality of method require in machine learning is extremely high. With Dataknobs approach, you can experiment thru knobs.

RAG For Unstructred and Structred Data

RAG Use Cases and Implementation

Here are several value propositions for Retrieval-Augmented Generation (RAG) across different contexts: Unstructred Data, Structred Data, Guardrails.

Why knobs matter

Knobs are levers using which you manage output

See Drivetrain appproach for building data product, AI product. It has 4 steps and levers are key to success. Knobs are abstract mechanism on input that you can control.

Our Products

KreateBots

  • Pre built front end that you can configure
  • Pre built Admin App to manage chatbot
  • Prompt management UI
  • Personalization app
  • Built in chat history
  • Feedback Loop
  • Available on - GCP,Azure,AWS.
  • Add RAG with using few lines of Code.
  • Add FAQ generation to chatbot
  • KreateWebsites

  • AI powered websites to domainte search
  • Premium Hosting - Azure, GCP,AWS
  • AI web designer
  • Agent to generate website
  • SEO powered by LLM
  • Content management system for GenAI
  • Buy as Saas Application or managed services
  • Available on Azure Marketplace too.
  • Kreate CMS

  • CMS for GenAI
  • Lineage for GenAI and Human created content
  • Track GenAI and Human Edited content
  • Trace pages that use content
  • Ability to delete GenAI content
  • Generate Slides

  • Give prompt to generate slides
  • Convert slides into webpages
  • Add SEO to slides webpages
  • Content Compass

  • Generate articles
  • Generate images
  • Generate related articles and images
  • Get suggestion what to write next